If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x-190=0
a = 3; b = 1; c = -190;
Δ = b2-4ac
Δ = 12-4·3·(-190)
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2281}}{2*3}=\frac{-1-\sqrt{2281}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2281}}{2*3}=\frac{-1+\sqrt{2281}}{6} $
| 120-28x=78 | | |2x-1|=|2x+3| | | 2(2+4x)=-7(x-1) | | (2x+9)^2=36 | | (2x+9)=36 | | 43+3u=-35 | | Y=-8-2.5x | | X^2+x-840=0 | | 4t^2+6t+6=0 | | 4x+7=2(2x+4)-1 | | 78=43+3x | | 3x-1+8=x-10 | | p=12-0.5Q | | 5(−x−4)=−(−x+8) | | 5=x+30÷x+8 | | (-3x/8)=48 | | -6v/7=-42 | | X^2-61x=0 | | -4v/9=-20 | | (-x+8)(-x+6)=0 | | 0.8x+1.3333333333333333333333333333333333333333333333333=2x | | 9+2x×4=x×4+8 | | 3^2x+1=9^x+3 | | (X)(y)=40.5 | | a/8=34 | | 4.1+10m=7.75 | | x^2+(6/7)x-(1/7)=0 | | (x-4)^2=x^2-8x+16 | | (x-4)*(x-4)=x*x-8x+16 | | 2a-9=4a-9 | | 4x–7–3x=-11 | | (x-4)²=x²-8x+16 |